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a b s t r a c t

We present results from a numerical investigation of the coiling patterns obtained when
a slender elastic rod is deployed onto a moving substrate. The Discrete Elastic Rods
method is employed to explore the parameter space, construct phase diagrams, identify
their phase boundaries and characterize the pattern morphology. The various length
scales of the patterns are primarily set by the gravity-bending length and depend only
logarithmically on the deployment height. The curvature near the contact point, together
with the dimensionless speed mismatch between deployment and the belt, dictate the
characteristics of the patterns. The phase boundaries are found to be independent of both
the gravito-bending length and the deployment height, as long as the latter is above a
threshold value. We also evaluate the relative importance of twist and curvature strains,
which confirms that bending has a dominant role.

© 2015 Published by Elsevier Ltd.
1. Introduction

Deployment of a slender filament onto a rigid substrate
is a scenario that arises in a variety of engineering appli-
cations. From the micron to the kilometer, examples in-
clude carbon nanotube serpentines [1], electrospinning of
polystyrene fibers [2], 3D-printing [3], stretchable elec-
tronics components [4] and transoceanic cables [5]. As the
filament impacts the substrate (static or moving) the coil-
ing of the filament can lead to complex patterns.

When the filament is a viscous thread, these periodic
coiling patterns resemble the stitches of a sewing machine
and the process has come to be known as the ‘fluid me-
chanical sewing machine’ (FMSM) [6]. Even when the sub-
strate is static, the fluid coils in a nearly circular patterns
with a radius dictated by the competition between vis-
cous, gravitational, and inertial effects. This coiling prob-
lem, known as the ‘liquid rope trick’, has been studied

∗ Correspondence to: MIT, 1-330, 77 Massachusetts Avenue, Cam-
bridge, MA 02139, United States.

E-mail address: preis@mit.edu (P.M. Reis).

http://dx.doi.org/10.1016/j.eml.2014.12.004
2352-4316/© 2015 Published by Elsevier Ltd.
through experiments and scaling analyses [7–9], and three
distinct coiling regimes (viscous, gravitational, and iner-
tial) have been identified [10]. The buckling instability of
liquid threads, upon which coiling ensues, has also been
studied theoretically [11,12]. The problem has also been
addressed numerically by solving a nonlinear boundary
value problem [13], and regions ofmultistability have been
reported [14]. In the FMSM, the rotational symmetry of the
coiling instability is broken by the translation of the sub-
strate, leading to a multitude of complex patterns. These
patterns were first reported in experiments [6], and later
rationalized by a stability analysis to predict the onset of
the nonlinearmodes [15]. The transitions between the var-
ious patterns aswell as their frequency structure have been
experimentally determined [16,17]. A numerical frame-
work has been developed [18,19] using tools from discrete
differential geometry [20] that is able to predictively sim-
ulate the patterns of the FMSM. A numerical description of
the patterns, classified based on the Fourier spectra of the
motion of the point of contact between the substrate and
the thread, has also been studied in detail [21].

An analogy between the coiling of viscous threads and
elastic ropes was first mentioned in 1958 [22] but a formal
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account for these similarities was only recently consid-
ered [23]. Indeed, when the filament is a thin elastic rod
that impacts a rigid substrate, the coiling patterns are sim-
ilar to that of the FMSM [24–27], such that the problem is
now referred to as the ‘elastic sewingmachine’ (ESM) [26].
The first numerical solution to coiling of flexible rods on
a static substrate [24], however, involved a sign error in
the inertial terms [25]. The system was later character-
ized experimentally, and compared against numerical so-
lutions [25]. Similarly to the case of fluid coiling, three
distinct coiling regimes were observed for elastic coiling
(inertial, elastic, and gravitational). A moving substrate in
the elastic case has been addressed experimentally and nu-
merically, and a multitude of patterns were reported [26].
Despite these recent advances in the study of the ESM, a
quantitative characterization and subsequent rationaliza-
tion of all of the possible nonlinear patterns, in terms of
the relevant physical and geometric parameters, remains
an open topic.

We have recently studied the ESM [27] by combin-
ing precision desktop experiments with Discrete Elastic
Rods (DER) simulations; a cutting edge computational
tool ported from the Computer Graphics (CG) community
[28,18]. These simulations have been accurately validated
against experiments, with no fitting parameters [27]. The
primary control parameterswere identified to be the speed
mismatch between the deployment and belt speeds, the
gravito-bending length (the characteristic length scale of
the problem) and the height of deployment. The specific
cases of coiling onto a static substrate and the first sinu-
soidal mode on a moving substrate were studied in de-
tail [27], but a quantitative characterization of the other
nonlinear patterns has not yet been performed.

Here, we leverage the experimentally validated DER
simulation tool to study all of the coiling patterns of the
ESM.Weperforma systematic numerical investigation and
provide a description of the patterns morphology versus
the physical and geometrical parameters of the system.
Upon identification of the relevant length scales, we con-
struct phase diagrams and identify their phase boundaries.
The onset of coiling is first studied by analyzing the planar
weakly nonlinear shapes of a rod held between the injector
and the substrate.Moreover, we relate the physical param-
eters to the curvature of the rod near its contact point with
the substrate. Particular emphasis is placed on the patterns
that exhibit coiling loops and their wavelength is found
to vary continuously across the phase boundaries. We
quantify the relative importance of bending and twisting
energies, which further emphasizes the importance of cur-
vature near the contact point for pattern selection.

2. Problem definition

In Fig. 1A, we present a schematic of our problem. A
thin elastic rod is deployed vertically from a height, H , and
at a speed v, onto a rigid substrate (conveyor belt) that
translates horizontally at speed, vb. The control parameter
of the system is taken to be the dimensionless speed
mismatch, ϵ = (v − vb)/v, between the injector and the
belt. The contact point between the suspended heel and
the belt moves in the x–y plane, and ‘prints’ geometrically
Fig. 1. (A) An injector (1) deploys a thin elastic rod (2) onto a conveyor
belt (3). (B) Representative snapshots of the trace of the rod (Lgb =

3.3 cm and H̄ = 15) left on the belt for the various coiling regimes: (I)
Meandering, ϵ = 0.13; (II) Stretched coiling, ϵ = 0.33; (III) Alternating
loops, ϵ = 0.5; (IV) Translated coiling, ϵ = 0.7. Definitions of the
wavelength, λ, characteristic length,Λ, and loop radius, Ro , of the coiling
patterns are also shown in schematic.

nonlinear patterns on the belt (see Fig. 1B): sinusoidal
meandering (I), stretched coiling (II), alternating loops (III),
and translated coiling (IV). More details of this setup were
provided in [27].

The rod is assumed to be naturally straight and made
out of an isotropic, linear elastic and incompressible ma-
terial (Poison’s ratio ν = 0.5), with Young’s modulus, E,
and shear modulus, G = E/3. The three contributions to
the energy per unit length in the deformed rod are elas-
tic, Ee, gravitational, Eg , and inertial, Ei. We focus on a
regime where v is low enough, so that inertia can be ne-
glected. The elastic energy can have bending and twist-
ing components, Ee = Eb + Et , but for the purposes of
the present scaling description we ignore Et (even it is in-
cluded in the simulations, see Section 3). Taking the rod as
inextensible (reasonable approximation given its slender-
ness) and balancing the gravitational and bending contri-
butions, Eg ∼ Ee, yields the gravito-bending length Lgb =

[(r20E)/(8ρg)]
1/3 [29,27], the primary characteristic length

scale of our system. The deployment height, H , is the sec-
ondary length scale. Hereafter, we present all the lengths
normalized by Lgb as denoted by an overbar, e.g. λ̄ = λ/Lgb.

3. Numerical experiments

Our numerical investigation makes use of the Discrete
Elastic Rods (DER) method [28], which was previously val-
idated against experiments with excellent agreement and
no fitting parameters [27]. The source code is available for
download in [30]. DER follows a Kirchhoff-like dynamic
representation of an extensible rod [31], but starts from
a discretized version of the elastic energy functional and
subsequently follows an approach from discrete differen-
tial geometry [20] to derive the corresponding equations of
motion. This approach has the benefit of capturing impor-
tant features of the underlying nonlinear geometry, which
are often lost in more standard discretization methods for
the well established smooth equations [32].

The rod is described by its arc-length parameterized
centerline, γ(s), and a material frame represented by the
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angular deviation, θ(s), from the reference frame, which
is maintained across time steps using parallel transport.
Stretching and bending are captured by the deformation of
the centerline, while twisting is described by the rotation
of the material frame. The twist and curvature of the
deformed configuration are given by θ ′(s) and κ(s) =

|γ ′′(s)|, respectively, where prime refers to differentiation
with respect to s.

The contact between the rod and the substrate is mod-
eled by Dirichlet boundary conditions (pinned nodes) that
prevent translation after deposition. However, the edges
of the deposited rod (an edge connects two consecutive
nodes) that lie within an arc-length αLgb from the contact
point, are allowed to rotate about the centerline of the rod.
We have found that our quantities of interest (e.g. coiling
radius and pattern wavelength) are insensitive to α in the
range 5 ≤ α ≤ 50, so we chose α = 5.

Our numerical exploration involves systematic sweeps
along ϵ and H̄ for rods with different values of Lgb. Unless
stated otherwise, the geometric and material parameters
of our representative rod are (identical to the experiments
in [27]): r0 = 0.16 cm, ρ = 1.18 g/cm3, and E = 1.3 MPa

(i.e. Lgb = 3.3 cm), deployed from H̄ = 15 at v = 1.0 cm/s.
For sweeps along the range 0 ≤ ϵ ≤ 1, we start with
a belt speed of vb = 1.0 (or 0) cm/s and step up (or
down) along ϵ by decreasing (or increasing) the belt speed
in increments of 0.01 cm/s, while keeping the injection
speed fixed. Steady patterns are ensured by injecting at
least 500Lgb length of rod onto the belt. The inherentmulti-
stability [27] requires a bidirectional sweep, along both
ϵ = 0 → 1 and ϵ = 1 → 0.

Throughout, the gravito-bending length is varied (when
not kept fixed at the representative case of Lgb = 3.3 cm)
in the range 1.0 < Lgb (cm) < 10.0, by fixing two of
the three parameters (r0, ρ, E) and varying the third by
up to three orders of magnitude. The ranges explored are:
0.07 < r0 (cm) < 0.6, 0.05 < E (MPa) < 30, and
0.05 < ρ (g/cm3) < 25. The dimensionless deployment
height (when not kept fixed at the representative case of
H̄ = 15) is varied by fixing Lgb = 3.3 cm and changing H .

4. Pattern selection

In Figs. 2A and B, we present phase diagrams in the
(Lgb, ϵ) and (H̄, ϵ) parameter spaces, fixing H̄ = 15 and
Lgb = 3.3 cm, respectively. The data points correspond to
the phase boundaries between consecutive patterns, with
open (or filled) symbols obtained for ϵ = 0 → 1 (or
ϵ = 1 → 0). Three patterns are observed when increasing
ϵ: meandering (Fig. 1B,I), alternating loops (Fig. 1B,III), and
translated coiling (Fig. 1B,IV). Along the reverse sweep
(ϵ = 1 → 0), an additional stretched coiling pattern
(Fig. 1B,II) is obtained. There are extended regions of
bistability, e.g. (I,II), (I,III) and (III,IV). Note that in [27] we
reported phase diagrams with these same patterns but did
not systematically explore their dependence on Lgb nor H̄ .

Since the (Lgb, ϵ)phase boundaries in Fig. 2A are vertical
(solid lines), we conclude that the pattern selection is
independent of Lgb. The numerical values of the location of
the phase boundaries, ϵ it , are provided in Table 1, where i is
A

B

Fig. 2. Phase diagrams of the (A) parameter space (Lgb, ϵ) with
normalized deployment height fixed at H̄ = 15, and (B) parameter
space (H̄, ϵ) with Lgb = 3.3 cm. The data-points correspond to the
dimensionless speed mismatch, ϵ, at the transition between two states.
Open symbols represent the phase transitions along ϵ = 0 → 1, whereas
filled symbols stand for the transitions along ϵ = 1 → 0.

Table 1
Numerical values of dimensionless speed mismatch, ϵ it , at
the phase boundaries shown in Fig. 2.

Boundary ϵ it

I–(I,II) 0.09 ± 0.02
(I,II)–(I,III) 0.37 ± 0.00
(I,III)–III 0.56 ± 0.00
III–(III,IV) 0.67 ± 0.01
(III,IV)–IV 0.73 ± 0.01

the label for the respective boundaries: I–(I,II), (I,II)–(I,III),
(I,III)–III, III–(III,IV) and (III,IV)–IV. From Fig. 2B, we also
conclude that the (H̄, ϵ)phase boundaries are independent
of the deployment height, with some deviations in the
I–(I,II) and (I,III)–III boundaries that are only constant
for H̄ > 9.65 and H̄ > 30.02, respectively. For the
other boundaries, (I,II)–(I,III), III–(III,IV) and (III,IV)–IV, the
variation in ϵ it is less than 10% in the range 3.0 < H̄ < 100.
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Fig. 3. (A) Three dimensional perspective of the suspended heel at normalized injected length of (i) L̄e = 0, (ii) L̄e = 0.6, (iii) L̄e = 3.2, and (iv) L̄e = 4.2. In
(iv), the deformation is non-planarwith non-zero y(s∗). Inset: schematic diagramof the projection of the suspended heel onto the x–z plane. (B) Coordinates
of maximum deflection point, (x, y, z), at s = s∗ as function of the normalized extra length, L̄e . The vertical dashed lines correspond to the configurations
presented in (A). (C) Heel radius, R∗ , as a function of the gravito-bending length, Lgb , when deployed from a height of H̄ = 15. (D) Variation in R∗ with
normalized deployment height, H̄ , for a rodwith Lgb = 3.3 cm. The dashed line is the fit of the data to Eq. (1), withD∗

1 = 0.20 ± 0.01 andβ∗
= 1.15 ± 0.05.
The reason for this deviation from height-independent
behavior is that, when H̄ is small, the bending energy of the
rod dominates over its gravitational potential. The gravito-
bending description mentioned in Section 2 is only valid
for sufficiently large deployment heights.

5. Shape of the suspended heel

Previously,we had established a link between the shape
of the suspended heel near the contact point and the
morphology of the meandering patterns [27], remaining,
however, at the level of scalings. We proceed with a more
comprehensive characterization of the shape of the heel
near the belt, as a function of the geometric and material
parameters (Lgb and H̄) using the following protocol. We
first initiate the simulations by deploying the rod onto
the belt with ϵ = 0 (v = vb) so that the segment of
rod between the injector and the substrate (the suspended
heel) assumes a x–z planar catenary configuration; see
Fig. 3A(i). The belt is then switched off (vb = 0 cm/s) at
t = ti while keeping the injection speed unchanged. This
results in the gradual accumulation of extra length of rod,
Le(t) =

 t
ti
v dt∗, which increases the curvature near the

contact point and eventually causes the planar catenary to
buckle out of the x–z plane; see Fig. 3A(ii–iv).

Fig. 3B plots the coordinates of the maximum deflec-
tion point of the heel, [x(s∗), y(s∗), z(s∗)], versus the nor-
malized injected extra length, L̄e. The transverse coordinate
remains y(s∗) ∼ 0 until L̄e ≈ 3.5; e.g. configurations (i)
and (ii), in Fig. 3A. Beyond this point, there is out-of-plane
deformation and y(s∗) > 0; e.g. configurations (iii) and (iv)
in Fig. 3A.

Note that x(s∗) ∼ z(s∗) when L̄e ≈ 0.6 (Fig. 3A,ii).
When this happens, the segment of rod between the point
of maximum deflection and the contact point with the belt
can be approximated by a quarter circle with radius R̄∗, the
heel radius, which we regard as a shape parameter that we
now quantify. The normalized heel radius is found to be
constant, R̄∗

= 1.64 ± 0.01, as a function of Lgb (Fig. 3C).
Moreover, the dependence of R̄∗ on H̄ (Fig. 3D), is well
described by

R̄∗
= D∗

1 log

H̄


+ β∗, (1)

where D∗

1 = 0.20 ± 0.01 and β∗
= 1.15 ± 0.05 are

numerical constants obtained by fitting the data. A simi-
lar logarithmic dependence on H̄ was also found in [27],
for the characteristic wavelength of the meandering pat-
terns. This was rationalized by noting that the shape of the
suspended heel above the point of maximum deflection,
as measured by the angle ψ (see Fig. 3A, inset), scales as
ψ ∼ (s∗ − s)−1 and the logarithm dependence is obtained
upon the integration x(s∗) ∼

 s∗

0 ψ(s)ds, which was re-
quired for the derivation of the onset wavelength. More-
over, comparing our results for R̄∗ and those in [27] for the
amplitude, A, of the meandering pattern mode reveals that
A ≈ 2R∗

√
ϵ.

The linearity between R∗ and Lgb and the logarithmic
dependence of R∗ on H̄ will also be found for the length
scales of all of the other coiling patterns analyzed next.
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Fig. 4. (A) Normalized loop periodicity length, Λ̄, as a function of the dimensionless speed mismatch, ϵ. (B) Variation in normalized onset loop periodicity
length, Λ̄0 , with the gravito-bending length, Lgb . (C) Normalized loop radius, R̄o , as a function of the dimensionless speed mismatch, ϵ. (D) Variation in the
static coiling radius, R̄C , and onset radius, R̄i , with the gravito-bending length, Lgb . In (C) and (D), the open and filled symbols correspond to sweeps along
the ϵ = 0 → 1 and ϵ = 1 → 0 directions, respectively.
6. Morphology of coiling patterns with loops

We turn to a systematic quantification of the morphol-
ogy of all the patterns in Figs. 1 and 2 that form coil-
ing loops (the meandering patterns were already analyzed
in [27]). Our goal is to determine how the various features
of these patterns (e.g. periodicity length scales and radius
of the coiling loops) depend on the physical and control pa-
rameters.
Wavelength: We introduce the periodicity length, Λ, as
the distance traveled by the belt between the formation
of two subsequent loops, and in the case of meandering,
between two subsequent peaks (see Fig. 1B for definition
on each of the patterns). Compared to the wavelength, λ,
of the pattern, Λ = λ for meandering, stretched coiling,
and translated coiling, and Λ = λ/2 for the alternating
loops. In Fig. 4A, we plotΛ versus the dimensionless speed
mismatch, along two directions of the parameter sweep:
(i) ϵ = 0 → 1 (open symbols) and (ii) ϵ = 1 → 0 (filled
symbols). For (i), the data is well described empirically by,

Λ̄ = Λ̄0(1 − ϵ2), (2)
where Λ̄0 is a constant set by the physical and control
parameters. Fitting the data in Fig. 4A to Eq. (2) yields
Λ̄0 = 9.11 ± 0.15, which is strikingly similar to the onset
meandering wavelength, λ̄0 ≈ 10.5, of the meandering
patterns [27]. In the opposite sweep direction, ϵ = 1 → 0,
the data still follows Eq. (2) for translated coiling and a
portion of the alternating loops, but significantly deviates
from it in the regions of bistability; (I,II) and (I,III) in Fig. 2.
We have not yet been able to rationalize this discrepancy
between the forward and reverse directions of the ϵ sweep.
For a fixed deployment height, we found that Λ̄0 is
independent of Lgb (Λ̄0 = 9.12± 0.01 is constant in Fig. 4B,
for H̄ = 15), i.e. the dimensional periodicity length of
the pattern scales linearlywith the gravito-bending length.
Moreover, when fixing Lgb, we found that Λ̄0 ∼ log(H̄),
such that Λ̄0 depends weakly on H̄: 6.6 < Λ̄0 < 11.7 for a
variation of the deployment height in the range 3 < H̄ <
238 for a rod with Lgb = 3.3 cm (see Fig. S1A).
Loop radius: All coiling patterns other than the meanders,
form loops where the rod is deployed over an existing seg-
ment already on the belt. Self-contact is not taken into
account in our simulations, but this was found to be
unimportant in the detailed comparison against experi-
ments [27].

We now introduce the characteristic loop radius, Ro =

P/(2π), where P is the perimeter of the loop. In Fig. 4D, we
plot the normalized loop radius, R̄o, versus ϵ (fixing H̄ =

15). For the alternating loops (triangles) and translated
coils (squares), we find the linear variation

R̄o(ϵ) =
R̄i(1 − ϵi)+ (ϵ − ϵi)R̄C

1 − ϵi
, (3)

where ϵi = 0.37 is the dimensionless speed mismatch
at the onset of the transition between meandering and
alternating loops, R̄i = R̄o(ϵi) is the normalized radius of
the loops at this onset and R̄C is the normalized static coiling
radius (deployment onto a static belt [27]) when ϵ = 1.
The fit of Eq. (3) to the data is shown as the dashed line
Fig. 4D with R̄C = 2.02 ± 0.02, and R̄i = 1.06 ± 0.02.
However, for the stretched coiling patterns (Fig. 4D, filled
circles), there is a significant variation from Eq. (3), which
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Fig. 5. The twisting to bending energy ratio in the deposited rod, ηd , and
in the heel, ηh , for the various patterns, as functions of the dimensionless
speed mismatch, ϵ.

we have not yet been able to rationalize. We recall that the
stretched coiling patterns are only observed in the reverse
sweep direction, ϵ = 1 → 0, in a region of bistability of
the phase diagram.

Similarly to our characterization of Λ̄, we now inquire
how the loop radius is set by Lgb and H̄ . In Fig. 4E, we plot R̄C

and R̄i as functions of Lgb (fixing H̄ = 15) and observe that
they are both nearly constant at R̄C = 2.02 ± 0.00, and
R̄0 = 1.01 ± 0.01. The loop radius is therefore set by the
gravito-bending length. Both R̄C and R̄i do exhibit, however,
a logarithmic dependence on H̄ , that is reminiscent of the
above behavior for the heel radius and the wavelength. A
more detailed account on how R̄C and R̄i depend on H̄ is
provided in the SI.

7. Interplay between bending and twist

We now turn to evaluating the relative importance
of the stored bending and twisting energies, in both the
suspended heel and the portion of the rod that is deposited
on the belt, beyond the contact point. Given the periodicity
of the coiling patterns, it suffices to focus on the strains and
energies per unit length for a single wavelength.

We have assumed that the rod is made of an isotropic
and linearly elastic material with a Poisson’s ratio of ν =

0.5. As such, the ratio of shear and Young’smoduli isG/E =

3 and the ratio between twisting and bending energies
reduces to

η(s) =

 s
0 Etds∗ s
0 Ebds∗

=
1
3

 s
0 θ

′(s∗)2ds∗ s
0 κ(s

∗)2ds∗
. (4)

The strains in the deposited rod and in the suspended
heel are referred to as (θ ′

d, κd) and (θ ′

h, κh), respectively.
The corresponding ratios of twisting to bending energies
averaged over a single period of the pattern, are ηd and
ηh, respectively (see SI for a non-averaged description,
along the arc-length). For the deposited rod on the belt,
ηd can be readily calculated from Eq. (4) by integrating
over one wavelength beyond αLgb (see Section 3) from the
contact point, and the process is averaged over at least
1000 oscillations. For the suspended heel, the integration
to obtain ηh is done over the time that it takes to produce a
single period of the pattern on the belt (again the process
is averaged over at least 1000 oscillations). Realizing that
each point s on the deposited rodwas deployed at time t(s),
the twisting strain in the heel associatedwith the same s on
the deposited loop is θ ′

h = [

h |θ ′(s∗)|ds∗]/h(t), where h(t)

is the total arc-length of the heel. Similarly, the bending
strain is κh(s) = [


h κ(s

∗)ds∗]/h(t). Substitution of θ ′

h and
κh(s) into Eq. (4) yields ηh.

In Fig. 5, we plot the period-averaged twisting to bend-
ing ratios, ηd (filled symbols) and ηh (open symbols), as a
function of the dimensionless speed mismatch, ϵ. In Fig. 4,
we found a smooth variation of the various characteris-
tic lengths (Λ̄ and R̄o) over the full range of ϵ. By con-
trast, both ηd and ηh exhibit significant discontinuities at
the phase boundaries. The meanders and alternating loops
(with ηh, ηd . 0.01 and ηh, ηd . 0.1, respectively)
are dominated by bending, whereas twist prevails for the
translated coils (especially in the suspended heel, where
ηh ∼ 1). This behavior can be understood by recognizing
that each loop induces a 2π amount of total twist in the
rod, while deploying along a straight line releases stored
twist by rolling about the centerline. The latter twist re-
movalmechanism is energetically costly for a rod deployed
into a curved configuration.

The total accumulated twist is negligible in the mean-
dering mode since no coils form; the build up of twist in
the first quarter of the oscillation is released during the sec-
ond quarter and similarly for the third and fourth quarters,
in the opposite direction. Translated coiling comprises pri-
marily circular loops (all in the same coiling direction) re-
sulting in a dominance of twist. For the alternating loops,
twist builds during the first half of a period but is then
released in the second half by the subsequent loop (sym-
metric about the x-axis), both separated by an intermedi-
ate portion of nearly straight deployment. The stretched
coils are an intermediate case (0.03 < ηd < 0.14 and
0.07 < ηh < 0.39), which was to be expected since these
patterns can be interpreted as a juxtaposition of a coiled
loop (usually in the same direction) and a portion of a sinu-
soidal meander (Fig. 1B,II). Interestingly, stretched coiling
can be separated into two regions with different values of
the twist to bending ratio. When the stretched coils are in
the same direction, they follow energy branches that ap-
pear to be extensions of those for translated coiling, also
with high values of the twist to bending ratios; ηd, ηh &
0.1. By contrast, when the stretched coils form on alternate
sides, these ratios are significantly lower, ηd, ηh . 0.1, in
what appears to be a continuation of the branches for alter-
nating loops. In spite of this, ourmotivation to still consider
the stretched coiling patterns in a pattern classification of
its own is motivated by the analogous stretched coiling
patterns of the FMSM [21], which were found to have a
uniquely identifying frequency content when compared to
all other patterns.

Overall, the twisting to bending energy ratio is larger
for the suspended heel than for the deposited pattern. This
is presumably due to the fact that self-weight forces the
heel to be nearly straight [33], with small κ(s), except near
the contact point, which does not however affect twist
accumulation.
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8. Discussion and conclusion

We have quantitatively described the various coiling
patterns that form when a thin rod is deployed onto a
moving substrate. Our findings emphasize the prominence
of the gravito-bending length, Lgb, in setting the various
length scales of the patterns, which are only modified log-
arithmically by the deployment height, H . The shape of
the suspended heel is also set by Lgb. The curvature near
its contact point, together with the dimensionless speed
mismatch between the injector and the belt, dictate the
characteristics of the patterns. The importance of bend-
ing in this process was further highlighted by our eval-
uation of the ratio between twisting to bending energies
in the rod. Our characterization in dimensionless form,
provides a general predictive account of this pattern for-
mation process. At places, we had to follow an empirical
approach, such as in the fits to Eqs. (1)–(3). Given the
strongly nonlinear geometry of the problem, rationaliz-
ing these findings through analytical methods would have
been a challenging endeavor, but we hope that our work
will inspire further theoretical efforts in this direction.

Note that we have focused on straight rods, neglecting
the effect of natural (i.e. intrinsic) curvature. In practical
applications, natural curvature can arise from the storage
of cables/pines in spools and can fundamentally alter the
coiling behavior, as recently shown for the cases of static
coiling and meandering in the ESM [27]. The DER tool that
we have used in this study can simulate rods of arbitrary
natural configuration, and the common prominence of
natural curvature in engineered rodlike structures calls
for a similar systematic study on the effect of natural
curvature on pattern formation. This is however beyond
the scope of the current study and we leave this for future
work.

Our results on the ESM call for a direct comparison
with the phase diagrams of the patterns that were recently
reported for the FMSM [21,23], to which our system shows
a remarkable qualitative resemblance. These similitudes
are despite the differences in the constitutive descriptions
between a viscous thread and an elastic rod. A combined
rationalization of these two systems could potentially
yield unprecedented design guidelines in a number of
engineering processes that have analogous geometries, e.g.
3D-printing [3], electrospinning of polystyrene fibers [2]
and stretchable electronics components [4].
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